Proceedings of Knots 96 edited by Shin'ichi Suzuki ©1997 World Scientific Publishing Co. pp. 501–513

UNIQUENESS OF ESSENTIAL FREE TANGLE DECOMPOSITIONS OF KNOTS AND LINKS

MAKOTO OZAWA

ABSTRACT. In this paper, we show that if a knot admits an essential free 2-string tangle decomposition, then essential 2-string tangle decompositions of the knot are unique up to isotopy, and we characterize the link types which admit non-isotopic essential free 2-string tangle decompositions.

1. INTRODUCTION

Let B be a 3-ball and $t = t_1 \cup \ldots \cup t_n$ a union of mutually disjoint n arcs properly embedded in B. Then we call the pair (B,t) an n-string tangle. We say that an n-string tangle (B,t) is trivial if (B,t) is homeomorphic to $(D \times I, \{x_1, \ldots, x_n\} \times I)$ as pairs, where D is a 2-disk and x_i is a point in intD $(i = 1, \ldots, n)$. According to [1], we say that (B,t) is essential if $cl(\partial B - N(t))$ is incompressible and boundaryincompressible in cl(B - N(t)). And, according to [3], we say that (B,t) is free if $\pi_1(B-t)$ is a free group. We note that (B,t) is free if and only if cl(B - N(t)) is a handlebody ([2, 5.2]).

Let L be a knot or link in S^3 , and let (B,t) and (B',t') be *n*-string tangles. We say that a union $(B,t) \cup (B',t')$ is an *n*-string tangle decomposition of L if $S^3 = B \cup B', B \cap B' = \partial B = \partial B', \partial t = \partial t'$ and $L = t \cup t'$. We say that an *n*-string tangle decomposition $(B,t) \cup (B',t')$ of L is essential (free resp.) if both (B,t) and (B',t') are essential (free resp.). Let $(B,t) \cup (B',t')$ and $(C,s) \cup (C',s')$ be *n*-string tangle decompositions of L. Then we say that these tangle decompositions are mutually isotopic if there is an ambient isotopy $\{f_t\}: S^3 \to S^3$ $(t \in [0,1])$ such that $f_0 = id, f_1(\partial B) = \partial C$ and $f_t(L) = L$ for any $t \in [0,1]$.

Then our result is ;

Theorem 1.1. Let L be a knot or link in S^3 which admits an essential free 2string tangle decomposition. Then L admits non-isotopic essential 2-string tangle decompositions if and only if L is equivalent to a 2-component Montesinos link $M(0; (\alpha_1, \beta_1), (2, 1), (\alpha_2, \beta_2), (2, 1))$ illustrated in Figure 1, where α_i and β_i are coprime integers, and α_i is an odd integer greater than 1 (i = 1, 2).

Moreover, if L is the Montesinos link, then L admits exactly two essential free 2-string tangle decompositions up to isotopy, and any essential 2-string tangle decomposition of L is isotopic to one of those two.

Corollary 1.2. If a knot K admits an essential free 2-string tangle decomposition, then essential 2-string tangle decompositions of K are unique up to isotopy.

Remark 1.3. The two essential free 2-string tangle decompositions of the Montesinos link in Theorem 1.1 are given by the 2-spheres P and Q indicated in Figure 1.

FIGURE 1. $M(0; (\alpha_1, \beta_1), (2, 1), (\alpha_2, \beta_2), (2, 1))$

Throughout this paper, we work in the piecewise linear category. For an *n*-manifold X and a subcomplex Y of X, N(Y) or N(Y;X) will denote a regular neighborhood of Y in X.

2. NATURES OF FREE TANGLES

In this section, we prepare some lemmas for Theorem 1.1.

Lemma 2.1. Let V be a handlebody, F a separating surface properly embedded in V, and V_1 and V_2 the closure of the components of V - F. If F is incompressible in V, then both V_1 and V_2 are handlebodies.

Proof. Since F is incompressible and two-sided in V, both homomorphisms $\pi_1(F) \rightarrow \pi_1(V_1)$ and $\pi_1(F) \rightarrow \pi_1(V_2)$ induced by the inclusion maps are injective. Therefore both homomorphisms $\pi_1(V_1) \rightarrow \pi_1(V)$ and $\pi_1(V_2) \rightarrow \pi_1(V)$ induced by the inclusion maps are injective. Thus both $\pi_1(V_1)$ and $\pi_1(V_2)$ are subgroups of $\pi_1(V)$, hence free groups. Then by [2, 5.2], both V_1 and V_2 are handlebodies.

The following Lemmas 2.2, 2.3 and 2.4 follow Lemma 2.1.

Lemma 2.2. Let (B,t) be a free 2-string tangle and D a disk properly embedded in B which intersects t in a single point. Then D is isotopic rel.t to a disk in ∂B .

Lemma 2.3. Let (B,t) be a free 2-string tangle. If (B,t) is inessential, then (B,t) is trivial.

Lemma 2.4. Let $(B, t_1 \cup t_2)$ be a free 2-string tangle and A an annulus properly embedded in $B - (t_1 \cup t_2)$ which does not separate t_1 and t_2 . If A is incompressible in $B - (t_1 \cup t_2)$, then A is isotopic rel. $t_1 \cup t_2$ to an annulus in $\partial B - t$.

The following Lemma 2.5 will be used for Lemmas 2.6 and 2.8.

Lemma 2.5. ([5, Proposition 1.6], [1, Proposition 2.1]) Let M be an orientable closed 3-manifold with a genus two Heegaard splitting (V_1, V_2) . If M contains a 2-sphere S such that each component of $S \cap V_1$ is a non-separating disk in V_1 and $S \cap V_2$ is incompressible and not ∂ -parallel in V_2 , then M has a lens space or $S^2 \times S^1$ summand.

Lemma 2.6. Let (B,t) be a free 2-string tangle and S a 2-sphere in intB which intersects t in four points. If S - t is incompressible in B - t, then S is isotopic rel.t to ∂B .

Proof. Suppose S is not isotopic rel.t to ∂B for a contradiction. Glue a 3-ball B' to B along their boundaries. Put $V_1 = B' \cup N(t; B)$ and $V_2 = cl(B - N(t; B))$. Then, (V_1, V_2) is a genus two Heegaard splitting of the 3-sphere $B \cup B'$, each component of $S \cap V_1$ is a non-separating disk in V_1 , and $S \cap V_2$ is incompressible and not ∂ -parallel in V_2 . In consequence of this observations and Lemma 2.5, the 3-sphere $B \cup B'$ must have a lens space or $S^2 \times S^1$ summand. Thus we obtain a contradiction.

The following Lemma 2.7 will be used for Lemma 2.8.

Lemma 2.7. ([4, Theorem 0.1]) Let L be a tunnel number one link. Then L is composite if and only if L is a connected sum of a 2-bridge knot and a Hopf link. Moreover, any unknotting tunnel γ for L is isotopic to an arc obtained from the upper or lower tunnel for the 2-bridge knot (Figure 2).

Now we define a *Montesinos tangle* as a "partial sum" of n rational tangles of slope $\beta_i/\alpha_i (i = 1, ..., n)$ illustrated in Figure 3, and denote it by $T(\beta_1/\alpha_1, ..., \beta_n/\alpha_n)$.

Lemma 2.8. Let $(B, t_1 \cup t_2)$ be a free 2-string tangle and D a disk properly embedded in B which intersects $t_1 \cup t_2$ in two points. If $D - (t_1 \cup t_2)$ is incompressible in $B - (t_1 \cup t_2)$ and D is not isotopic rel. $t_1 \cup t_2$ to a disk in ∂B , then $(B, t_1 \cup t_2)$ is homeomorphic rel. ∂B to a Montesinos tangle $T(\beta/\alpha, 1/2)$ as pairs, where α and β are coprime integers and α is an odd integer greater than 1 (Figure 4). In addition, $(B, t_1 \cup t_2)$ is essential.

FIGURE 2. 2-bridge decomposition of the 2-bridge knot

FIGURE 3. Montesinos tangle $T(\beta_1/\alpha_1, \ldots, \beta_n/\alpha_n)$

FIGURE 4. Montesinos tangle $T(\beta/\alpha, 1/2)$

Proof. Since $D - (t_1 \cup t_2)$ is incompressible in $B - (t_1 \cup t_2)$ and D intersects $t_1 \cup t_2$ in two points, ∂D splits the four points $\partial t_1 \cup \partial t_2$ in ∂B into pairs of two points. Thus D separates $(B, t_1 \cup t_2)$ into two 2-string tangles, and we denote them by $(B_1, t_1^1 \cup t_2^1)$ and $(B_2, t_1^2 \cup t_2^2)$. Here, note that by Lemma 2.1, $(B_i, t_1^i \cup t_2^i)$ is free (i = 1, 2).

Claim 2.9. $(B_i, t_1^i \cup t_2^i)$ is trivial (i = 1, 2).

Proof. Suppose $\partial B_i - (t_1^i \cup t_2^i)$ is incompressible in $B_i - (t_1^i \cup t_2^i)$. Let S^i be a 2-sphere in *intB* which is obtained by pushing in ∂B_i into *intB* slightly. Then $S_i - (t_1 \cup t_2)$ is incompressible in $B - (t_1 \cup t_2)$ because $D - (t_1 \cup t_2)$ is incompressible

in $B - (t_1 \cup t_2)$. Hence by Lemma 2.6, S_i is isotopic $rel.t_1 \cup t_2$ to ∂B . This implies that D is isotopic $rel.t_1 \cup t_2$ to a disk in ∂B , and contradicts the hypothesis of the Lemma. Consequently, $\partial B_i - (t_1^i \cup t_2^i)$ is compressible in $B_i - (t_1^i \cup t_2^i)$. Hence by Lemma 2.3, $(B_i, t_1^i \cup t_2^i)$ is trivial.

By Claim 2.9, we may assume that $(B, t_1 \cup t_2)$ is a Montesinos tangle $T(\beta_1/\alpha_1, \beta_2/\alpha_2)$ and $(B_i, t_1^i \cup t_2^i)$ is a rational tangle of slope β_i/α_i (i = 1, 2)

Claim 2.10. *D* intersects only one component of $t_1 \cup t_2$.

Proof. Suppose D intersects both components of $t_1 \cup t_2$. Let B' be a 3-ball and D' a disk properly embedded in B'. Glue B' to B so that $\partial B' = \partial B$ and $\partial D' = \partial D$. Put $V_1 = B' \cup N(t_1 \cup t_2; B), V_2 = cl(B - N(t_1 \cup t_2; B))$ and $S = D \cup D'$. Then, (V_1, V_2) is a genus two Heegaard splitting of the 3-sphere $B \cup B'$, each component of $S \cap V_1$ is a non-separating disk in V_1 , and $S \cap V_2$ is incompressible and not ∂ -parallel in V_2 . In consequence of this observations and Lemma 2.5, the 3-sphere $B \cup B'$ must have a lens space or $S^2 \times S^1$ summand. This is absurd.

By Claim 2.10, we may assume that $D \cap (t_1 \cup t_2) = D \cap t_1$, $t_1^1 \cup t_2^1 = t_1 \cap B_1$, $t_1^2 = t_1 \cap B_2$ and $t_2^2 = t_2$. In addition, α_1 is an odd integer greater than 1 because $(B, t_1 \cup t_2)$ is a 2-string tangle and D is not isotopic $rel.t_1 \cup t_2$ to a disk in ∂B .

Let $(C, s_1 \cup s_2)$ be a trivial 2-string tangle, E a disk properly embedded in C which separates the two strings $s_1 \cup s_2$, and γ a "trivial" arc which connects s_1 and s_2 (Figure 5).

FIGURE 5. $(C, s_1 \cup s_2)$ with γ

Let *L* be the link obtained from $(B, t_1 \cup t_2)$ by attaching $(C, s_1 \cup s_2)$ so that $\partial t_i = \partial s_i (i = 1, 2)$ and $\partial D = \partial E$. Then, since $cl((B \cup C) - N(L \cup \gamma)) = cl(B - N(t_1 \cup t_2)) \cup cl(C - N(s_1 \cup s_2 \cup \gamma)) \cong cl(B - N(t_1 \cup t_2))$ is a genus two handlebody, *L* is a tunnel number one link with an unknotting tunnel γ .

Claim 2.11. *L* is a composite link with the decomposing sphere $D \cup E$.

Proof. Let C_1 and C_2 be the closure of the components of C - E such that $C_i \supset s_i$ (i = 1, 2). Since α_1 is an odd integer greater than 1, $(B_1 \cup C_1, t_1^1 \cup t_2^1 \cup s_1)$ is a non-trivial 1-string tangle. This completes the proof because $(B_2 \cup C_2, t_1^2 \cup t_2^2 \cup s_2)$ is not a trivial 1-string tangle.

By Claim 2.11 and Lemma 2.7, L is a connected sum of the 2-bridge knot $t_1 \cup s_1$ and the Hopf link $t_2 \cup s_2$. Then by rotating *intB* in a "horizontal" axis if necessary, we may assume that $(B, t_1 \cup t_2)$ is the Montesinos tangle in the Lemma.

Finally, if $(B, t_1 \cup t_2)$ is inessential, then by Lemma 2.3, it is trivial, and hence (B, t_1) is a trivial 1-string tangle. On the other hand, since α_1 is an odd integer greater than 1 and (B_2, t_2^1) is a trivial 1-string tangle, (B, t_1) is a non-trivial 1-string tangle. This completes the proof of the Lemma.

3. Proof of Theorem 1.1

Proof. Let L be a knot or link in S^3 with an essential free 2-string tangle decomposition $(B_1, t_1) \cup (B_2, t_2)$. Suppose that L admits another essential tangle decomposition $(C_1, s_1) \cup (C_2, s_2)$ which is not isotopic to the above one. Put $P = \partial B$ and $Q = \partial C$.

If $P \cap Q = \emptyset$, then we may assume that Q is contained in B_1 . Since $Q - t_1$ is incompressible in $B_1 - t_1$ and by Lemma 2.6, Q is isotopic $rel.t_1$ to P. This contradicts the hypothesis. Therefore $P \cap Q \neq \emptyset$.

We may assume that each component of $P \cap Q$ is a loop and $P \cap Q \cap L = \emptyset$, and that $|P \cap Q|$ is minimum among all 2-spheres ambient isotopic rel.L to Q.

Claim 3.1. Each component of $P \cap Q$ is a loop in P (in Q resp.) which splitts the four points $P \cap L$ ($Q \cap L$ resp.) into pairs of two points.

Proof. Let l be an innermost component of $P \cap Q$ in P, and let D be the corresponding innermost disk in P. Here, by exchanging D if necessary, we may assume that $D \cap L$ consists of at most two points. If $D \cap L = \emptyset$, then by the incompressibility of Q-L in S^3-L and the irreducibility of $B_i - t_i (i = 1, 2)$, we can reduce $|P \cap Q|$, and this contradicts the minimality of $|P \cap Q|$. If $D \cap L$ is one point, then by Lemma 2.2, we can reduce $|P \cap Q|$, and this contradicts the minimality of $|P \cap Q|$. This completes the proof.

Claim 3.2. $P \cap Q$ consists of a single loop.

Proof. Suppose $P \cap Q$ consists of more than one loop. Then by Claim 3.1, those are mutually parallel in P - L and in Q - L. Hence there is an annulus A in Q with $A \cap (P \cap Q) = \partial A$. Then A is an annulus properly embedded in B_1 or in B_2 which satisfies the hypothesis of Lemma 2.4. Thus we can reduce $|P \cap Q|$, and this contradicts the minimality of $|P \cap Q|$. This completes the proof because $P \cap Q \neq \emptyset$.

Let D_1 and D_2 be the closure of the components of $Q - (P \cap Q)$ such that $D_1 \subset B_1$ and $D_2 \subset B_2$. Then for each $i = 1, 2, D_i$ is a disk properly embedded in B_i which intersects t_i in two points. Further, by the incompressibility of Q - L in $S^3 - L$ and the minimality of $|P \cap Q|$, it follows that D_i satisfies the hypothesis of Lemma 2.8. Therefore, (B_i, t_i) is a Montesinos tangle $T(\beta_i/\alpha_i, 1/2)$, where α_i and β_i are coprime integers and α_i is an odd integer greater than 1. Hence L is equivalent to a Montesinos link $M(0; (\alpha_1, \beta_1), (2, 1), (\alpha_2, \beta_2), (2, 1))$, where α_i and β_i are coprime integers and α_i is an odd integer greater than 1 (i = 1, 2)

Conversely, let L be the Montesinos link in Theorem 1.1, and let P and Q be the 2-spheres indicated in Figure 1. Then by Lemma 2.8, each of P and Q gives an essential free 2-string tangle decomposition of L.

Let Σ be the 2-fold branched covering space of S^3 along L. Then Σ is a Seifert fibered space over a 2-sphere with four singular fibers f_1 , f_2 , f_3 and f_4 such that the Seifert invariants of f_1 , f_2 , f_3 and f_4 are 1/2, 1/2, β_1/α_1 and β_2/α_2 , where α_i is an odd integer greater than 1 (i = 1, 2). Then we have;

 $\pi_1(\Sigma) \cong \langle x_1, x_2, x_3, x_4, h | x_1^2 h = 1, x_2^2 h = 1, x_3^{\alpha_1} h^{\beta_1} = 1, x_4^{\alpha_2} h^{\beta_2} = 1, x_1 x_2 x_3 x_4 = 1, [x_i, h] = 1 (i = 1, 2, 3, 4) \rangle.$

Let P_0 and Q_0 be the preimages of P and Q in Σ by the covering projection. Then P_0 and Q_0 are incompressible tori saturated in the Seifert fibration.

Suppose that P and Q are mutually isotopic rel.L. Then P_0 and Q_0 are mutually isotopic in Σ , and hence the fiber f_3 is isotopic to the fiber f_4 . This implies that $\alpha_1 = \alpha_2$ and that x_3 is conjugate to x_4h^b for some integer b.

Put $G = \pi_1(\Sigma)/\langle x_4, h \rangle \cong \langle x_1, x_2, x_3 | x_1^2 = 1, x_2^2 = 1, x_3^{\alpha_1} = 1, x_1x_2x_3 = 1 \rangle$. Then by the above argument G is isomorphic to the group $H \cong \langle x_1, x_2 | x_1^2 = 1, x_2^2 = 1, x_1x_2 = 1 \rangle$ because $x_3 = wx_4h^bw^{-1}$ and $x_4 = h = 1$. Then H is a cyclic group, and by Satz 3 of [6], G is not a cyclic group because of $\alpha_1 > 1$. This is a contradiction, and hence P and Q are not mutually isotopic.

The latter harf of Theorem 1.1 is contained in the proof of the former harf. This completes the proof of Theorem 1.1. $\hfill \Box$

Acknowledgement The author is very grateful to Professor Shin'ichi Suzuki for his encouragement and helpful suggestions. And he would like to thank Professor Kanji Morimoto for his crucial advices through this paper.

MAKOTO OZAWA

References

- C. McA. Gordon and A. W. Reid, Tangle decompositions of tunnel number one knots and links, J. Knot Ramification, Vol. 4, No. 3 (1995) 389-409.
- [2] J. Hempel, 3-manifolds, Ann. of Math. Studies No. 86, Princeton N.J., Princeton University Press, 1976.
- [3] T. Kobayashi, A construction of arbitrarily high degeneration of tunnel numbers of knots under connected sum, J. Knot Ramification, Vol. 3 No. 2(1994) 179-186.
- [4] K. Morimoto, On composite tunnel number one links, Topology Appl., 59 (1994) 59-71.
- [5] K. Morimoto, Planar surfaces in a handlebody and a theorem of Gordon-Reid, preprint.
- [6] N. Pecynski, G. Rosenberger und H. Zieschang, Über Erzeugende ebener diskontinuierlicher Gruppen, Invent. Math., 29 (1975) 161-180.

DEPARTMENT OF MATHEMATICS, SCHOOL OF EDUCATION, WASEDA UNIVERSITY, NISHI-WASEDA 1-6-1, SHINJUKU-KU, TOKYO 169-8050, JAPAN

E-mail address: oto@w3.to, URL: http://w3.to/oto/